The commuting probability of a finite group
is defined to be the probability that two uniformly random elements
commute. If
has order
and
conjugacy classes, this is the same thing as
. You might think this is a good way of measuring how close a group is to being abelian, but a remarkable and well-known fact is that no finite group satisfies
, so in fact nonabelian groups never get close to being abelian, in this sense.
In the 1970s Keith Joseph made three insightful conjectures about the set of all possible commuting probabilities .
- every limit point of
is rational,
- for every
there is some interval
that
avoids,
- every nonzero limit point of
is in
.
Note that 3 is stronger than 1.
In 2014 I proved the first two of these conjectures (building on an earlier paper of Hegarty), and then I publicly expressed doubt about the third. My doubt was largely based on the observation that there is a family of 2-groups whose commuting probability converges to 1/2, but no 2-group has commuting probability 1/2 (although does).
But I was wrong! The third conjecture was proved recently in this paper of Thomas Browning: