Skip to content

Random Permutations

Sean Eberhard's mathematics blog

  • Home
  • About me
  • Webinars
  • Resources

Category: teatime-puzzles

Hit the ball hard

Happy Wimbledon. Another teatime puzzle.

Let’s say we have a player with an extremely powerful but inconsistent serve. Half the time she aces, half the time she faults. What is the probability that she wins her service game?

Sean Eberhard current-events, teatime-puzzles 2 Comments 2021-06-292021-06-29

Weak subgroups

Here is a teatime puzzle.

Suppose {G} is a finite group and {S \subseteq G} is a subset containing the identity such that {xy \in S} whenever {x \in S}, {y \in S}, and {x \neq y}. Show that these are the only possibilities:

  1. {S} is a subgroup,
  2. {S = \{1, x\}} for some {x \in G},
  3. {S = \{1, x, x^{-1}\}} for some {x \in G},
  4. {S = Q \setminus \{-1\}} for some quaternion subgroup {Q \leq G}.

What other possibilities are there if we do not assume {1 \in S}?

Sean Eberhard groups, teatime-puzzles Leave a comment 2021-04-262021-04-26

Posts navigation

Older posts

Recent Posts

  • A talk about Babai’s PCC conjecture 2022-02-23
  • Joseph’s conjectures about commuting probability 2022-02-17
  • The apparent structure of dense Sidon sets 2021-07-14
  • Hit the ball hard 2021-06-29
  • Weak subgroups 2021-04-26
  • 2020 Christmas crossword 2020-12-25
  • Talk at TAU about Babai’s conjecture in high rank 2020-11-23
  • A thought about pancakes 2020-08-10
  • The characteristic polynomial of a random matrix is almost always irreducible 2020-08-05
  • Babai’s conjecture for classical groups with random generators 2020-05-21
  • Jan Saxl 2020-05-04
  • How to evaluate an ordering quiz 2020-04-24
  • Webinar in Additive Combinatorics 2020-04-15
  • Mixing time of a pseudorandom number generator 2020-03-19
  • Thoughts on coronavirus 2020-03-18
  • An asymptotic for the Hall–Paige conjecture 2020-03-05
  • The avoidance density of (k,l)-sum-free sets 2020-01-17
  • A simple group of order 44 2020-01-16
  • Separating big sticks from little sticks, and applications 2019-12-30
  • Invariable generation of classical groups 2019-10-16
  • Symmetric intersecting families 2019-09-26
  • A teatime puzzle 2019-08-30
  • Mathematical handwriting 2019-08-22
  • Returning to Cambridge 2019-07-26
  • Random generation with cycle type restrictions 2019-04-30
  • Random generation of the special linear group 2019-03-29
  • Permutations with equal orders 2019-01-01
  • Generating direct powers of a simple group 2018-12-26
  • Probability that two permutations have the same order 2018-10-09
  • latex2wp: a tool for converting LaTeX to WordPress-ready HTML 2018-10-03
  • Rebooted blog 2018-09-23
  • Representation theory, for the impatient 2016-02-23
  • The Kronecker factor of an ultrafinite group 2015-02-09
  • Commuting probability of compact groups 2015-02-06
  • Leon Green’s theorem 2015-01-29
  • Joseph’s conjectures on commuting probability, an ultrafinitary perspective 2014-11-19
  • The idempotent theorem 2014-11-13
  • Erdős–Turán statistical group theory 2014-03-31
  • How many lattices are there? 2013-11-25
  • Total ergodicity 2013-05-28
  • Fekete’s lemma and sum-free sets 2013-01-13
  • Constructible regular polygons 2012-09-13
  • Generating direct powers 2012-03-27
  • The probability of coprimality 2012-03-24
  • Volume of the $n$-ball 2012-03-13
  • Rationals are repeating p-adics 2012-01-19
  • Inducing a Haar measure from a quotient 2012-01-19
  • Deriving the normal distribution 2012-01-03
  • A simpler example of a nonmeasurable set 2011-11-14
  • A question in general topology 2011-10-26
Create a website or blog at WordPress.com
  • Follow Following
    • Random Permutations
    • Join 26 other followers
    • Already have a WordPress.com account? Log in now.
    • Random Permutations
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...