Suppose that is a locally compact group and that is a closed subgroup with an -left-invariant regular Borel measure such that possesses a -left-invariant regular Borel measure . For instance, , , and . The following is how you then induce a Haar measure on . (Technically, it’s easier to construct Haar measure on compact groups, so this extends that construction slightly.)

For , define by

Let . Then , as a function of is supported on , so the above integral is finite. Moreover, if and is compact, then

Because a continuous function on a compact set is uniformly continuous (in the sense that there exists a neighbourhood of such that implies ), is continous. Since is -right-invariant, descends to a continuous function defined on . Moreover, if is the quotient map , then is supported on , so . Finally, define by

This linear functional is positive (in the sense that implies ), so the Riesz representation theorem guarantees the existence of a regular Borel measure on such that

for all . It is now a simple matter to check that is -left-invariant.